Engineering two-dimensional superconductivity and Rashba spin–orbit coupling in LaAlO3/SrTiO3 quantum wells by selective orbital occupancy

نویسندگان

  • Gervasi Herranz
  • Gyanendra Singh
  • Nicolas Bergeal
  • Alexis Jouan
  • Jérôme Lesueur
  • Jaume Gázquez
  • María Varela
  • Mateusz Scigaj
  • Nico Dix
  • Florencio Sánchez
  • Josep Fontcuberta
چکیده

The discovery of two-dimensional electron gases (2DEGs) at oxide interfaces-involving electrons in narrow d-bands-has broken new ground, enabling the access to correlated states that are unreachable in conventional semiconductors based on s- and p- electrons. There is a growing consensus that emerging properties at these novel quantum wells-such as 2D superconductivity and magnetism-are intimately connected to specific orbital symmetries in the 2DEG sub-band structure. Here we show that crystal orientation allows selective orbital occupancy, disclosing unprecedented ways to tailor the 2DEG properties. By carrying out electrostatic gating experiments in LaAlO3/SrTiO3 wells of different crystal orientations, we show that the spatial extension and anisotropy of the 2D superconductivity and the Rashba spin-orbit field can be largely modulated by controlling the 2DEG sub-band filling. Such an orientational tuning expands the possibilities for electronic engineering of 2DEGs at LaAlO3/SrTiO3 interfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO3/SrTiO3 devices

The recent development in the fabrication of artificial oxide heterostructures opens new avenues in the field of quantum materials by enabling the manipulation of the charge, spin and orbital degrees of freedom. In this context, the discovery of two-dimensional electron gases (2-DEGs) at LaAlO3/SrTiO3 interfaces, which exhibit both superconductivity and strong Rashba spin-orbit coupling (SOC), ...

متن کامل

Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...

متن کامل

Large modulation of the Shubnikov–de Haas oscillations by the Rashba interaction at the LaAlO3/SrTiO3 interface

We investigate the two-dimensional Fermi surface of high-mobility LaAlO3/ SrTiO3 interfaces using Shubnikov-de Haas oscillations. Our analysis of the oscillation pattern underscores the key role played by the Rashba spin–orbit interaction brought about by the breaking of inversion symmetry, as well as the dominant contribution of the heavy dxz/dyz orbitals on electrical transport. We furthermor...

متن کامل

Engineering a p+ip superconductor: Comparison of topological insulator and Rashba spin-orbit-coupled materials

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We compare topological insulator materials and Rashba-coupled surfaces as candidates for engineering p + ip superco...

متن کامل

Polarity-tunable magnetic tunnel junctions based on ferromagnetism at oxide heterointerfaces

Complex oxide systems have attracted considerable attention because of their fascinating properties, including the magnetic ordering at the conducting interface between two band insulators, such as LaAlO3 and SrTiO3. However, the manipulation of the spin degree of freedom at the LaAlO3/SrTiO3 heterointerface has remained elusive. Here, we have fabricated hybrid magnetic tunnel junctions consist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015